Energiankulutuksen joustosta
Kohteen riippuvuus lämpötilasta
Yksittäisen kohteen energiankulutuksen aikasarjat ovat useimmiten omasta välittömästä historiastaan, vuodenajasta sekä ulkolämpötilasta riippuvia. Monilla yhtiöillä on mahdollisuus tarkastella yksittäisiä aikasarjoja graafisesti, mutta miten ottaa haltuun koko mittaustietojen kokonaisuus?
Ready Solutions Oy:n näkemyksen mukaan avainasemassa on mittausdatan mahdollisimman automaattinen hyödyntäminen, esimerkiksi koneoppimismenetelmien tuottamien ennusteiden avulla. Ennusteet ja mittausdatassa oleva informaatio täytyisi tiivistää muutamaan keskeiseen tunnuslukuun, joista yhden käsittelemme tässä kirjoituksessa.
Käyttötapaukset
Suoran sähkölämmityksen kohteen tapauksessa erilaiset riippuvuuden tunnusluvut tarjoavat sähkön myyjälle ja miksei myös verkkopalveluita tarjoavalle yhtiölle mahdollisuuden esimerkiksi riskiperusteiseen hinnoitteluun.
Kaukolämmön liiketoiminnassa, jossa hinnoittelu perustuu tyypillisesti muutamaan julkisen hinnaston mukaiseen komponenttiin, tällaisten tunnuslukujen avulla voitaisiin hinnoitella verkostokohtaisesti perusmaksuja. Tausta-ajatuksena on, että asiakas maksaa optiosta käyttää energiaa.
Olemme rakentaneet kaukolämmön liiketoiminnoille automatisoidut prosessit, jotka tuottavat tapauksesta riippuen sopimusvesivirran tai tehon ennusteet.
Näiden suoraan liiketoimintaan liittyvien tapausten lisäksi mittausdatan laadunvarmistuksen näkökulmasta voi käydä läpi erityisen poikkeavia tunnuslukuja.
Kaarijousto – Arc Elasticity
Kaarijousto on tunnusluku, joka kohteen energiankulutuksen volyymista riippumattomasti pyrkii tiivistämään lämpötilariippuvuuden.
Jos käytetään yksinkertaista regressiomallia, niin jousto voidaan saada suoraan mallin kertoimia käyttäen. Muussa tapauksessa voidaan tuottaa paikalliset ennusteet ja laskea tulos auki niiden avulla. Molemmat esimerkit on esitetty kaavoina alla olevassa kuvassa.
Yllä olevassa kuvassa E on energiakulutus ja T on lämpötila, indeksoinneilla kuvataan paikallisuutta tai keskiarvoa tietyllä havaintoalueella.
Erityisesti pienten kulutuskohteiden tapauksessa ennusteiden tuottamisessa käytettyjen muuttujien arvojen vaihtelu voi olla suurta ja tuloksia täytyy tarkastella kriittisemmin.
Kiinnostaako koneoppiminen ja data-analytiikka energiatoimialalla?
Tilaa alta uutiskirjeemme!