Onko datavisualisointi analytiikkaa?

Data analytics

Mikä on oikeastaan analytiikan sisältö?

Viimeisten vuosien aikana sanasta analytiikka on tullut ns. weasel word*, eli se voi tarkoittaa mitä tahansa.

Datavisualisointi on datan eri asteikollisten muuttujien esittämistä kuvioiden avulla niin että ihminen yrittää jäsentää sen informaatioksi. Datan muuntaminen informaatioksi vaatii useimmiten jonkinlaisen kontekstin, ja luonnollisesti yrityksessä se on liiketoiminnan joku osa-alue.

Vaikka vaatisi että oikeaa analytiikkaa voi olla vain algoritmien käsittelemän datan vasteena tuleva johdettu data, kuten ostotodennäköisyys, niin monesti datan visualisointi ennen sen syöttämistä algoritmeille on tärkeää laadun varmistuksen mielessä. Datan hyödyntäjän on tunnettava datansa.

Data informaatioksi - eri näkökulmat tuovat arvoa

Ready Solutions Oy:n osakkaan Asko Kauppisen mukaan datavisualisoinnin käyttötarpeet voidaan useimmiten täyttää hyvällä Business Intelligence – ohjelmistolla ilman että suuren joukon liiketoimintakäyttäjiä tarvitsee opetella ohjelmointikieliä. Markkinoilla on useita hyviä vaihtoehtoja, eikä ole järkevä ajattelumalli, että organisaatiolla pitäisi olla vain yksi teknologiajoukko, joka voidaan ottaa käyttöön.

Datan edistyneempi hallinta edellyttää jo jonkin verran enemmän investointeja, mutta esimerkiksi tiettyjä kehityshankkeita voidaan toteuttaa ilman suurta tarvetta kaupallisille ohjelmistoille. Nykyään Python ja R ovat suosituimpia työvälineitä Data Scientistien keskuudessa ja ne voidaan ottaa käyttöön nopeasti.

Riippumatta siitä mitä organisaatiossa tehdään tai millä välineillä, niin datan hyödyntämisen tulee palvella liiketoimintaa. Käyttötarve voi olla tuotekehitys, riskienhallinta, kannattavuus, asiakaspalvelun laatutason nostaminen taikka miltei mikä tahansa.

Ready Solutions Oy:n osakkaan Jarkko Sahlmanin mukaan informaation arvo tulee pelkästään siitä, että liiketoimintajohto tai yrityksen työntekijät operatiivisella tasolla ymmärtävät yrityksen eri toimintojen ja prosessien nykytilan suhteessa tavoitteisiin ja tämän jälkeen tekevät toimintaan muutoksia, jotta asetettuihin tavoitteisiin päästäisiin.

Esimerkki -  mitä Google Analytics data kertoo?

Ready Solutions Oy:n markkinoinnin ja myynnin panosten vaikutusta voidaan tarkastella verkkosivujen erilaisilla kävijämäärien (käynnit, kävijät, uudet kävijät) sekä muilla, liikevaihtoon enemmän vaikuttavilla, muuttujilla mutta joita emme tässä halua avata tarkemmin.

Markkinoinnilla pyrimme avaamaan myyntimahdollisuuksia ja myyntimahdollisuus voi alkaa vaikkapa kontaktista myyntiimme verkkosivuillamme. Myyntimahdollisuudet taas pyritään muuttamaan toteutuneiksi kaupoiksi.

Heinäkuussa 2018 aloitimme useassa eri kanavassa cost per click – tyyppisen kampanjan, jolla pyrimme lisäämään liikennettä sivullamme olevaan artikkeliin sekä lisäämään LinkedInin puolella olevia yrityssivuston seuraajien määriä. Artikkeliin on tässä kampanjassa sijoitettu yhteydenottoon kannustavia CTA – elementtejä, kun joissain tilanteissa pyydämme vain kävijöitä seuraamaan yrityksemme sosiaalisten medioiden yrityssivuja.

Mielenkiintoinen osa-alue datan visualisointiin tai perusymmärryksen luomiseen siitä, on eri julkaisujen / sivujen käytön tarkastelu. Jos saman kuukauden aikana on tehty useita erilaisia julkaisuja, jokaista markkinoitu eri variantein niin tällainen analyysi antaa mahdollisuuksia optimoida markkinointia. 

Kehitä liiketoimintaasi datan avulla!

Ready Solutions Oy:n konsulttitiimillä on vahvaa kokemusta eri toimialoilta sekä erilaisista ohjelmistotuotteista. Erityisesti energiatoimialalla voimme auttaa liiketoimintasi kehittämisessä monia muita toimijoita syvällisemmän toimialaosaamisemme vuoksi.

Readyn konsultit vastaavat mielellään kysymyksiisi:

Asko.kauppinen@readysolutions.fi

Jarkko.sahlman@readysolutions.fi

+358451374850

*= näätä tyhjentää munan tekemällä siihen pienen reiän

Lisää ajankohtaisia julkaisuja:

Lakehouse – analytiikan data-alustan loogiset kerrokset ja tietomallit
Tutustu tarinaan
Aikasarjamallien ennustekäyttö tuotannossa ja ennusteiden aikasarjojen laadunvarmistus
Tutustu tarinaan
Mitä tarkoittaa sovellusten suorituskyvyn mittaaminen Azuressa?
Tutustu tarinaan
Azuren palvelut integraatioalustana
Tutustu tarinaan
Mitä on luottoriskien hallinnan data-analytiikka?
Tutustu tarinaan

Lisää ajankohtaisia julkaisuja:

Lakehouse – analytiikan data-alustan loogiset kerrokset ja tietomallit
Tutustu tarinaan
Aikasarjamallien ennustekäyttö tuotannossa ja ennusteiden aikasarjojen laadunvarmistus
Tutustu tarinaan
Mitä tarkoittaa sovellusten suorituskyvyn mittaaminen Azuressa?
Tutustu tarinaan
Azuren palvelut integraatioalustana
Tutustu tarinaan
Mitä on luottoriskien hallinnan data-analytiikka?
Tutustu tarinaan